
Copyright © 2006, SAS Institute Inc. All rights reserved.

DIGITS and DATES:
Proc SQL Goes Loopy
Jack Hamilton

Kaiser Foundation Health Plan

Copyright © 2006, SAS Institute Inc. All rights reserved. 2

Alternate Title

SAS Institute insisted that my original title be changed to

DIGITS and DATES: The SQL Procedure Goes "Loopy"

The new title doesn't have quite the same ring to it, does it?

Copyright © 2006, SAS Institute Inc. All rights reserved.

Overview
� This presentation describes a method to simulate data step

looping in SQL.

� Looping is a somewhat specialized requirement; much of
what you would do with loops in an algorithmic language is
done with set manipulation in SQL, so ordinarily there's no
need for this.

� SQL looping is especially useful when the data step is
inconvenient or not available.

� In my case (and this is not the case for everyone), I look
upon SQL as a challenge to be solved, so I will sometimes
use SQL even when the data step is easily available.

Copyright © 2006, SAS Institute Inc. All rights reserved.

A Fundamental Problem With SUGI Papers
This paper is in the Coders Corner section, which is designed
for brief descriptions of solutions to particular problems.

Alas, the problem I wanted to solve is too complicated to
explain fully in a short paper.

So I'm going to solve a much simpler problem instead. It's
almost trivial, so you might think "Why bother?"

The answer is "What I'm showing today is trivial, but it can be
scaled up to solve non-trivial problems."

Copyright © 2006, SAS Institute Inc. All rights reserved.

A Simple Problem
The simple problem I'm going to solve today is to list the even
numbers 0 through 98 without having an input table containing
all those numbers.

Copyright © 2006, SAS Institute Inc. All rights reserved.

The Key To Looping
The key to solving the looping problem in SQL is to have a
simple utility data set containing only the digits 0-9.

proc sql;

create table digits

(digit integer);

insert into digits

values(0) values(1) values(2)

values(3) values(4) values (5)

values(6) values(7) values(8)

values(9);

quit;

Copyright © 2006, SAS Institute Inc. All rights reserved.

The Key To Looping
By joining the digits table with itself, we can produce any
numbers we want. We can subset the results using a WHERE
clause.

Copyright © 2006, SAS Institute Inc. All rights reserved.

A Simple Example

proc sql;

select ones.digit

+ tens.digit*10

as number

from digits as ones,

digits as tens;

quit;

NOTE: The execution of this query involves

performing one or more Cartesian product

joins that can not be optimized.

This produces the numbers 0-99.

Copyright © 2006, SAS Institute Inc. All rights reserved.

A Simple Example
If you look at the resulting data set, you'll see that it's not
exactly what you wanted - it contains the right numbers, but in
the wrong order. You will see:

0

10

20

…

80

90

1

11

…

Copyright © 2006, SAS Institute Inc. All rights reserved.

What Happened?
It turns out that in SAS's implementation of SQL, joins are
performed from right to left rather than left to right as you might
expect. The fix is simple: just reverse the data sources:

proc sql;

select ones.digit

+ tens.digit*10

as number

from digits as tens,

digits as ones;

quit;

Copyright © 2006, SAS Institute Inc. All rights reserved.

Obtaining Subsets

If you don't want all the numbers, use a WHERE clause:

proc sql;

select ones.digit

+ tens.digit*10

as number

from digits as ones,

digits as tens

where mod(calculated number, 2) = 0;

quit;

Produces the even numbers 0-98.

Copyright © 2006, SAS Institute Inc. All rights reserved.

Obtaining Subsets

Or change your logic:

proc sql;

select 2 *

(ones.digit + tens.digit*10)

as number

from digits as tens,

digits as ones

where tens.digit < 5;

quit;

Copyright © 2006, SAS Institute Inc. All rights reserved.

Obtaining Offsets

If you don't want to start at 0, you can add an offset

proc sql;

select 100

+ ones.digit

+ tens.digit*10

as number

from digits as ones,

digits as tens

where mod(calculated number, 2) = 0;

quit;

Produces the even numbers 100-198.

Remember the Frivolous Law of Arithmetic: almost all
numbers are very, very, very large!

Copyright © 2006, SAS Institute Inc. All rights reserved.

Looping With Dates
Looping over a range of dates is just a modification of looping
with an offset. Suppose you want the 1000 days starting on
January 1, 2005:

proc sql;

select '01jan2005'd

+ ones.digit

+ tens.digit*10

+ hundreds.digit*100

as mydate length=5

format=date9.

from digits as hundreds,

digits as tens,

digits as ones

order by calculated mydate;

quit;

Copyright © 2006, SAS Institute Inc. All rights reserved.

A Utility Date Data Set
The Frivolous Theorum of Arithmetic doesn't really apply to
dates - you'll pretty much never need to deal with dates
outside the range 1886 to 4000 (for our internal standard for
unknown date values), so you can put them all into a SAS data
set containing all those dates, along with some other useful
information, and still not take up much storage space. That
lets you do a simple join on dates instead of the Cartesian
joins shown above.

Copyright © 2006, SAS Institute Inc. All rights reserved.

A Utility Date Data Set
data dates;

length date 5.;

do date = '01jan1886'd to '31dec4000'd;

year = year(date);

month = month(date);

dayofmonth = day(date);

dayofweek = weekday(date);

julian = juldate7(date);

lastdayofmonth =

(date=intnx('month', date, 0, 'e'));

output;

end;

format date date9.;

run;

Copyright © 2006, SAS Institute Inc. All rights reserved.

A Utility Date Data Set

See the accompanying paper for some examples using the
utility DATES data set.

Copyright © 2006, SAS Institute Inc. All rights reserved.

Why I Learned How To Do This
At my previous employer, we relied on SAS/Intrnet for data
collection and reporting.

SAS/Intrnet has two major components - the Application
Broker and htmSQL.

The Application Broker uses standard SAS programming -
data steps and procedures - and uses the Output Delivery
System to create HTML, PDF, or Excel-readable output. It's
very powerful, but also complicated.

Copyright © 2006, SAS Institute Inc. All rights reserved.

Why I Learned How To Do This
htmSQL is a combination of HTML and SQL. It's not as
powerful as the Application Broker, but it's easier to set up. It
can also do master/detail reporting, which the Application
Broker cannot easily do. It also gave better control over
HTML.

Because of its simplicity and power, I preferred to use htmSQL
whenever I could. That meant I had to learn new ways to
perform standard tasks.

Copyright © 2006, SAS Institute Inc. All rights reserved.

A Sample htmSQL "program"

{eachrow}
<TR>
<TD>{&sales}</TD>
<TD>{&date}</TD>
<TD>{&year}</TD>
<TD>{&month}</TD>
<TD>{&day}</TD>
</TR>
{/eachrow}
</TABLE>

{/query}
</BODY>

<HEAD>
<TITLE>htmSQL: Retail
Data</TITLE>
</HEAD>
<BODY>
{query datasrc="retail"}
{sql}
select sales,date,year,month,day
from sashelp.retail
Where year = {&PARAM}
{/sql}
<TABLE BORDER=1>
<TR> <TH>Sales</TH>

<TH>Date</TH>
<TH>Year</TH>
<TH>Month</TH>
<TH>Day</TH>

</TR>

Copyright © 2006, SAS Institute Inc. All rights reserved.

Why I Learned To Do This
The particular application I wanted to write was a file listing -
we added report files (PDFs) to a particular directory when
they were created, and I wanted the directory page to
automatically show the current list - I didn't want someone to
have to manual update the index page whenever a new report
was added.

I can get the names of the files in a directory using SAS
functions, but I needed to put the functions in a loop to get all
the filenames. Hence the need for looping in SQL.

The actual code used to obtain the listing is too complicated to
explain in a short presentation, so I will describe only simple
looping today. The directory listing code is shown in the
accompanying paper.

Copyright © 2006, SAS Institute Inc. All rights reserved.

Conclusion

One of the most powerful features in the data step,
iteration, can in many cases be simulated in SQL
though the use of utility data sets.

Although the examples in this paper are restricted
to ordinary programs and htmSQL, the techniques
illustrated can be used in any SQL environment,
including the SAS Java interfaces and standalone
database (Oracle, DB2, etc.) applications.

Copyright © 2006, SAS Institute Inc. All rights reserved.

Acknowledgements

� Richard deVenezia

Copyright © 2006, SAS Institute Inc. All rights reserved. 24Copyright © 2006, SAS Institute Inc. All rights reserved. 24

