
Creating Data-Driven Data Set

Names in a Single Pass Using

Hash Objects

Jack Hamilton

Kaiser Foundation Health Plan

Oakland, California

The Topic Today

The topic today is:

Creating multiple output data sets

In a single pass through an input data set

Where the output data set names are based on
values in the input data set and are not
known in advance

Why Would You Want To Do This?

If you're working strictly in SAS, you probably
wouldn't need to – BY groups, CLASSes, and
some reporting procedures can handle data
in groups.

But you might have external requirements that
you can't change:

Separate files for external programs

Separate files for external reporting

Pomity-haired bosses

And Another Reason

This topic gave me a handle to talk about two
things I'm interested in: DOW loops and Hash
Objects.

And I'm not making this up: I started looking at
this after someone asked a question on SAS-L.

Some Sample Data

data have;

do state = 'KY', 'CA', 'MS';

do b = 1 to 3;

do c = 200, 100;

output;

end;

end;

end;

stop;

run;

Some Of The Data

Out_KY

Out_CA

The Old Way To Do It

data ex2_KY ex2_CA ex2_MS;

set have;

select (state);

when ('KY') output ex2_KY;

when ('CA') output ex2_CA;

when ('MS') output ex2_MS;

otherwise error 'Unknown
State ' state=;

end;

run;

But…

But this requires that we know the state codes
in advance, and we've already stipulated that
we don't.

So we have to generate code dynamically.

Why Is Dynamic Code Bad?

It's not an unmitigated evil, of course, and
sometimes dynamic code generation is by far
the best solution to a problem, but…

• You can't see the code that's going to
execute, and

• In this case, it requires an extra read (or
more) through the data.

I'll show you how to do it anyway…

Here's One Way To Do It

Let's look back at the base code:

data ex2_KY ex2_CA ex2_MS;

set have;

select (state);

when ('KY') output ex2_KY;

when ('CA') output ex2_CA;

when ('MS') output ex2_MS;

otherwise error 'Unknown State '
state=;

end;

run;

One Way To Do It

The changeable part of the code is localized to
two places. All we need to do it to generate
those pieces of code and plug them in.

Three approaches (at least):

• Use PROC SQL to generate macro variables

• Use a data step to write code that you
%INCLUDE

• Use a data step to CALL EXECUTE code.

PROC SQL Approach

proc sql noprint;

select distinct

'ex3_' || state,

cats('when (',

quote(state),

') output ex3_',

state, ';')

into

:DATASETS separated by ' ',

:WHENS separated by ' '

from have;

quit;

PROC SQL Approach

data &DATASETS;

set have;

select(state);

&WHENS

otherwise;

end;

run;

Details are left as an exercise for the reader,
but Ron Fehd is doing a workshop
tomorrow on SELECT … INTO.

Many, Many Reads of the Data

Input Sort Sorted

WK1 WK2 WK3

Generate

Code
Splitter

ProgramOutput

Seven passes through the data!
Theoretically, we need only two.

But There's Another Way

How can we achieve the same result with only

two passes through the data?

• With Hash Objects

• And as a bonus, a DOW Loop

The DOW Loop

The DOW Loop was discovered by and named
after our section co-chair, Ian Whitlock.

It stands for DO loop of Whitlock.

He didn't name it for himself. As far as I can
tell, it was named by Paul Dorfman, who has
also promoted it.

The DOW Loop

It's faster than the standard one-iteration-per-
observation method of processing BY-groups in
a data step.

It simplifies code which is executed at the
beginning and end of BY-groups.

After you understand it, it's also simpler to use.

The DOW Loop

data _null_;

/* Code to run before BY-group */

putlog 'INFO: Starting BY-group';

do until (last.state);

set have;

by state notsorted;

/* Code to run for each observation */

putlog ' ' b= c=;

end;

/* Code to run after BY-group */

putlog 'INFO: Ending BY-group' state=;

run;

Traditonal Approach

data _null_;

set have;

by state notsorted;

/* Code to run before BY-group */

if first.state then

putlog 'INFO: Starting BY-group';

/* Code to run for each observation */

putlog ' ' b= c=;

/* Code to run after BY-group */

if last.state then

putlog 'INFO: Ending BY-group' state=;

run;

Advantages of New Way

• Fewer lines of code

• Faster
– Data step iterated few times

– No IF statements that will usually be False

• Easier to read (after you understand it)
because you don't have to think about when
IFs are executed (code can be read
sequentially)

• Also, there are some really neat things you
can do with double-DOW loops, but this is a
20 minute paper.

The Hash Object

• Also called an Associative Array, because it's
somewhat similar to associative arrays in
other languages such as REXX.

• Like an array, but with indexed keys instead
of numbered subscripts.

• Unfortunately, saddled with a verbose syntax.
It's also an unfamiliar syntax, but you'll get
over that.

• Paul Dorfman is doing a paper on this in this
room later this morning.

Using a Hash Object

• Declare it

• Initialize it

• Define the keys

• Define the data

• Add records

• Write the records back out

Three Key Differences

Three key differences between HOs and Arrays:

• Hash Objects use keys, not indices.

• Hash Objects are implemented as object-
oriented functions, not as base language
syntax.

• Most Hash Object functions accept
parameters for data set names and variable
names rather than data sets and variables

A Somewhat Obscure Point

That last point is somewhat obscure, I'll admit.

To state it differently:

Hash Objects let you decide on data set names
and variable names at run time rather than
compile time.

That's what makes this paper possible.

Let's Look at the Code

data _null_;

declare hash group;

group = _new_ hash(ordered: 'ascending');

group.definekey('_unique_Key');

group.definedata('State', 'b', 'c');

group.definedone();

do until (last.state);

set have;

by state notsorted;

_unique_key + 1;

group.add();

end;

group.output(dataset: 'ex5_' || state);

group.delete();

run;

Some Restrictions

• Data must be in BY-group order in this
example (but the groups themselves don't
have to be in sort order).

The example code contains an example of
using two Hash Objects to get around this
requirement.

• All the data for a group must fit into memory
(old fashioned, maybe they'll fix it someday).

Acknowledgments

• Ian Whitlock, for discovering this technique

• Paul Dorfman for publicizing it

• Ron Fehd for for further publicizing it

• Mike Rhoads for setting a good example

• SAS-L for bringing up interesting questions

Contact Information

Web site:

www.excursive.com/sas/

Email:

jfh@alumni.stanford.org

Revised paper and code will be on web site in a
week.

