
Paper 229-29

Using New Features in ODS to Create Master/Detail Reports
Jack Hamilton, First Health, West Sacramento, California

ABSTRACT
This paper discusses the concept of master/detail reports and discusses several methods of creating them in SAS, with an
emphasis on using the Output Delivery System.

INTRODUCTION
Master/detail reports are reports are generated from two or more data sets containing related information. One of the data
sets, the master, contains information pertinent to all of the related records. The other data sets contain information about
specific items related to the master record. Master/detail relationships are widely used in business. Here is an example of
master/detail records:

Invoices LineItems
Invoice_Num Customer Invoice_Date Invoice_Num Line_Num Item Cost

101 Hugo Furst 01Jan2004 101 1 Widget 12.00
102 Freida Peeples 15Jan2004 101 2 Gadget 10.00
103 Al E. Loohah 30Jan2004 101 3 Frammet 36.00

Invoices is the master table. There is one record for each invoice, containing information which applies to all items in the
invoice. This is a greatly simplified record; in real life, there would probably be address information, and potentially a host of
other items

LineItems is the detail table. There are 0 or more records for each invoice, containing information about the items ordered on
the invoice. Again, in real life there would probably be additional columns such as quantity and stock number.

A version of these data sets with more rows will be used for the remainder of the paper; the code need to create them is in
Appendix I.

It's quite common to want to take two data sets like these and produce a single report. Invoices and bills are an example;
class rosters are another. Many types of hierarchical and relational data can be thought of in terms of master/detail reports.
Unfortunately, there's no reporting procedure in base SAS designed to produce such reports.

WHAT WE DID IN VERSION 5 (AND BEFORE)
In version 5 (and previous versions), so called "data _null_" reports1 were typically used to create master detail reports.

DATA _NULL_ REPORTS
A data _null_ report uses data step code to produce a print file (listing output). A simple example is shown on the next page,
with the code in the left column and the list output in the right column. Page breaks are indicated with the text "<page>".

Although this example is quite simple, data _null_ reports can become quite complex, producing multiple output files, page and
report totals, and tables of contents. For some examples, see the SAS Institute publication SAS Guide to Report Writing:
Examples (Pubcode 55045) . Sample code which you can download and run can be found at

 <http://support.sas.com/samples/A55045>

Example 1: Simple DATA _NULL_ Reporting
The first step in master/detail reporting with data _null_ reporting in the data step is to join the two data sets together. It could
be done in the report-writing step, but in this case I'll do it separately so I can use the resulting data set in later examples.

In the sample output, '<page>' is used to indicate a page break.

title 'Simple data _null_ report';

data invoices_and_items;
 merge sugi29.invoices
 sugi29.lineitems;
 by invoice_num;
run;

data _null_;

 set invoices_and_items;
 by invoice_num;

 file print;

 if first.invoice_num then
 do;
 if _n_ ne 1 then
 put _page_;
 put 'Invoice: ' invoice_num
 'for ' customer
 'on ' invoice_date;
 totalcost = 0;
 end;

 put @5 line_num 3.
 @10 item $10.
 @22 cost comma10.2;

 totalcost + cost;

 if last.invoice_num then
 put /
 @10 'Total:'
 @22 totalcost dollar10.2;

run;

Simple data _null_ report
Invoice: 101 for Hugo Furst on 01JAN2004
 1 Widget 12.00
 2 Gadget 10.00
 3 Frammet 36.00
 4 Thingies 37.56

 Total: $95.56
<page>
Simple data _null_ report
Invoice: 102 for Freida Peeples on 15JAN2004
 1 Gadget 10.00
 2 Gizmo 50.37
 3 ItsIts 1.00
 4 Geehaws 5.76
 5 HooHaas 22.22

 Total: $89.35
<page>
Simple data _null_ report
Invoice: 103 for Al E. Loohah on 30JAN2004
 1 Gadget 10.00
 2 Gizmo 50.37
 3 Whatsit 100.00
 4 ItsIts 1.00

 Total: $161.37

There are two problems with data _null_ reporting: it can be very complicated to write (and to understand later), and it's
designed for monospace, lineprinter output only. That was OK back in the days when programmers did all the programming
and output went to lineprinters of lineprinters but nowadays many recipients want PDF or HTML output.

NEW FEATURES IN VERSIONS 6 AND 8
When version 8 came out2, there were some substantial improvements. The Output Delivery System (ODS) gave the ability to
send output to PDF, RTF, CSV, HTML, and other TLAs and ETLAs3. #BYVAL and #BYVAR allowed by values to be displayed
in titles. Keyed access to data sets provided another way to join tables. And PROC REPORT added powerful and general
support for custom reporting in a base SAS procedure.

USING #BYVAL TO CUSTOMIZE HEADERS
A common use of data _null_ was to add page titles whose text depends on data values. Sometime after version 5, the
special variables #BYVAR and #BYVALUE became available to print BY data values in the header. This eliminated the need
for some simple data _null_ reports.

3

EXAMPLE 2: USING #BYVAL

To save space, only the first page of output is shown.

options nobyline;
title "Invoice #BYVAL1 for #BYVAL2";

proc print data=invoices_and_items
 noobs;
 by invoice_num customer
 invoice_date;
 id line_num;
 var item cost;
 pageby invoice_num;sum cost;
 sumby customer;
run;

Invoice 101 for Hugo Furst on 01JAN2004

 Line_Num Item Cost

 1 Widget 12.00
 2 Gadget 10.00
 3 Frammet 36.00
 4 Thingies 37.56
----------- ----------
 Customer 95.56
Invoice_Num 95.56

The output isn't quite as pretty as that produced by the data step, but it is much easier to produce. And if you want to spiff it
up, or send output to PDF or HTML, you can use ODS.

PROC REPORT
PROC REPORT is a very powerful reporting procedure, but is not the topic of this paper. I will give an example, but for more
information see the SAS Institute documentation, or look at one of the many SUGI papers. I especially recommend papers by
Lauren Haworth, Ray Pass, or Dan Bruns. PROC TABULATE is often an alternative; see papers by the same list of suspects,
or Lauren Haworth's book.

EXAMPLE 3: PROC REPORT
title "Invoices from PROC REPORT";

proc report data=invoices_and_items
nowindows;

 column invoice_num customer
 invoice_date line_num item cost;
 define invoice_num / order noprint;
 define customer / order noprint;
 define invoice_date / display noprint;
 define line_num / order;
 define cost / sum;

 compute before _page_;
 line @1 'Invoice: ' invoice_num 3.
 ' for ' customer $10.
 ' on ' invoice_date
 worddatx12.;
 endcomp;

 break after customer / summarize page
dol;

run;

Invoices from PROC REPORT

Invoice: 101 for Hugo Furst on 01 Jan 2004
 Line_Num Item Cost
 1 Widget 12.00
 2 Gadget 10.00
 3 Frammet 36.00
 4 Thingies 37.56
 ==========
 95.56

Pages 2 and 3 are omitted to save space.

You may look at this and think "This isn't any simpler than writing a data _null_ report", but that's not quite the case. Data
null reporting gets more complicated more quickly than PROC REPORT, and PROC REPORT can more easily take
advantage of ODS. In addition, PROC REPORT does any needed sorting and summarization for you; you don't have to
explicitly code PROC SORT or summary statements.

4

SENDING DATA STEP OUTPUT TO ODS
You can use ODS in data _null_ reporting; just open an ODS destination, and the print output will go there. For example, if
you take the program code from Example 1 and surround it with ODS statements, you can create a PDF file.

EXAMPLE 4: ODS FROM THE DATA STEP
ods listing close;
ods pdf
 file='example4.pdf';

%include 'example1.sas';

ods pdf close;
ods listing;

USING INDEXES
Using the data step allows you to use the KEY= option on the SET statement, which means that you don't have to merge your
two input data sets (but the detail data set does have to be indexed).

EXAMPLE 5: USING INDEXES
title 'Data Step Example With Index';

data _null_;

 set sugi29.invoices;

 file print;

 if _n_ ne 1 then
 put _page_;

 put 'Invoice: ' invoice_num
 'for ' customer
 'on' invoice_date;
 totalcost = 0;

 iorc = 0;
 do while (_iorc_ = 0);
 set sugi29.lineitems
 key=invoice_num;
 if _iorc_ = 0 then
 do;
 put @5 line_num 3.
 @10 item $10.
 @22 cost comma10.2;
 totalcost = totalcost + cost;
 end;
 end;
 put @5 'Total'
 @22 totalcost comma10.2;
 error = 0;

run;

Data Step Example With Index
Invoice: 101 for Hugo Furst on 1 Jan 2004
 1 Widget 12.00
 2 Gadget 10.00
 3 Frammet 36.00
 4 Thingies 37.56
 Total 95.56
<page>
Data Step Example With Index
Invoice: 102 for Freida Peeples on 15 Jan 2004
 1 Gadget 10.00
 2 Gizmo 50.37
 3 ItsIts 1.00
 4 Geehaws 5.76
 5 HooHaas 22.22
 Total 89.35
<page>
Data Step Example With Index
Invoice: 103 for Al E. Loohah on 30 Jan 2004
 1 Gadget 10.00
 2 Gizmo 50.37
 3 Whatsit 100.00
 4 ItsIts 1.00
 Total 161.37
Note: In real life, you would need additional code for exception
detection - for example, if an invoice has no lines, you might want
to print an explanatory note to that effect. All possible values for
IORC under various error conditions are shown in the
document-ation for the %SYSRC system autocall macro. I don't
know of anything listing the values for KEY= in particular. For this
example, checking for a value of 0 (got a record) versus non-0
(didn't get a record) is sufficient.

You might look at this and think "This is much more complicated than the other code! Why bother!?", and you'd be right, but
only because this is a simple example. If you have more levels of detail - cities within counties within states within regions, for
example - it quickly becomes even more difficult to keep track of all the IN= and FIRST. and LAST. variables. This method
allows you to put all the code dealing with one data set in one place.

5

IN-LINE FORMATTING IN VERSION 8.2
Version 8.2 of SAS added new formatting capabilities in titles and footnotes. Using an ODS escape character and special
formatting commands, you can control the font and (to some extent) the location of individual pieces of your titles and
footnotes. Although this does not add any additional data capabilities, it does increase the control your have over your output.
The example below uses a style to change the appearance of some text, and the m and n commands to align text. The m tells
ODS to save the current location; -2n tells ODS to go to that location on a new line.

EXAMPLE 6: IN-LINE FORMATTING
options nobyline;
title "^S={font=(helvetica)
font_size=3}Invoice ^m#BYVAL1 ^-2nfor
#BYVAL2 ^-2non #BYVAL3^S={}";

proc report data=invoices_and_items
nowindows
 style(summary)={font_weight=bold};
 by invoice_num customer invoice_date;

 column line_num item cost;

 define line_num / order;
 define cost / sum;

 rbreak after / summarize page dol;

run;

Note: This particular example isn't very interesting. A
real-life example would probably eliminate some of the
internal divider lines and add a description for the total
line. Those things are easy enough to do, but are outside
the scope of this paper.

Because this PROC REPORT uses a BY statement, you can't take advantage of PROC REPORT's ability to sort your data
automatically; the input data set must already be sorted by or indexed on the BY variables.

NEW FEATURES IN VERSION 9

PROC DOCUMENT
PROC DOCUMENT is a base SAS procedure which lets you reorder and print output from SAS procedures and the data step.
PROC DOCUMENT works with DOCUMENT objects, which are created by the new ODS DOCUMENT destination. This new
facility (some of which is still under development) is discussed in several other sessions at this SUGI; please read the
associated papers for more details. This paper presents a way to use ODS DOCUMENTs for master/detail reports, but does
not explore the details.

There are two steps to the process. First, you create a document object for each section of output. For our data, there will be
3 invoice documents (one for each invoice in INVOICES) and 3 lineitem documents (again, one for each distinct invoice).
Notice that it’s not necessary to join the two tables together. PROC REPORT doesn't support ODS DOCUMENT as well as
PROC TABULATE does, so I'm using PROC TABULATE.

EXAMPLE 7A: CREATING PROC DOCUMENT OBJECTS

ods document name=example7;

proc tabulate data=sugi29.invoices;
 by invoice_num;
 class invoice_num customer;
 var invoice_date;
 keylabel max=' ';
 table invoice_num * customer,

invoice_date*max*format=worddatx12.;
run;

proc tabulate data=sugi29.lineitems;
 by invoice_num;
 class line_num item;
 var cost;
 keylabel sum='';
 table (line_num * item) all,
 cost*sum;
run;

ods _all_ close;

You can use PROC DOCUMENT to get a list of the document objects the previous procedures created:

6

EXAMPLE 7B: LISTING DOCUMENT OBJECTS

ods document name=example7;

proc document name=example9;
 list / levels=all;
 run;
quit;

produces:

Listing of: \Work.Example9\
Order by: Insertion
Number of levels: All

 Obs Path Type
 1 \Tabulate#1 Dir
 2 \Tabulate#1\ByGroup1#1 Dir
 3 \Tabulate#1\ByGroup1#1\Report#1 Dir
 4 \Tabulate#1\ByGroup1#1\Report#1\Table#1 Table
 5 \Tabulate#1\ByGroup2#1 Dir
 6 \Tabulate#1\ByGroup2#1\Report#1 Dir
 7 \Tabulate#1\ByGroup2#1\Report#1\Table#1 Table
 8 \Tabulate#1\ByGroup3#1 Dir
 9 \Tabulate#1\ByGroup3#1\Report#1 Dir
 10 \Tabulate#1\ByGroup3#1\Report#1\Table#1 Table
 11 \Tabulate#2 Dir
 12 \Tabulate#2\ByGroup1#1 Dir
 13 \Tabulate#2\ByGroup1#1\Report#1 Dir
 14 \Tabulate#2\ByGroup1#1\Report#1\Table#1 Table
 15 \Tabulate#2\ByGroup2#1 Dir
 16 \Tabulate#2\ByGroup2#1\Report#1 Dir
 17 \Tabulate#2\ByGroup2#1\Report#1\Table#1 Table
 18 \Tabulate#2\ByGroup3#1 Dir
 19 \Tabulate#2\ByGroup3#1\Report#1 Dir
 20 \Tabulate#2\ByGroup3#1\Report#1\Table#1 Table

All we're interested in is the tables; the two in bold are the ones associated with the first BY-group.

Next, you play the output back, in the correct order and with appropriate page breaks. Unfortunately, the process of
setting this up is not as automated as it ought to be; I think that future releases of SAS will make this easier. We want to
print out the header for the first invoice, which is the first BY-group in the first TABULATE, followed by the data for that
invoice, which is the first BY-group in the second TABULATE:

EXAMPLE 7C: REPLAYING OUTPUT
ods pdf
file="%sysfunc(pathname(sugi29))\..\example
9.pdf" notoc;
ods pdf startpage=never;

proc document name=example9;
replay
\Tabulate#1\ByGroup1#1\Report#1\Table#1;
replay
\Tabulate#2\ByGroup1#1\Report#1\Table#1;
run; quit;

ods pdf startpage=now;

proc document name=example9;
 replay
\Tabulate#1\ByGroup2#1\Report#1\Table#1;
 replay
\Tabulate#2\ByGroup2#1\Report#1\Table#1;
run; quit;

ods pdf close;

This produces the following output:

7

This obviously needs more work to get the appearance right, but the concept is there.

This approach seems like it's the most work of any seen so far. So why use it? Because it lets you produce all the pieces you
want separately (probably using BY-groups) and combine them in a different order later. If you want to produce a one page
report with two tables and a graph, there's probably no reason to use DOCUMENTs. On the other hand, if you want to
produce that page for 100 different invoices, it's going to be much more efficient to run two PROC TABULATEs and one
PROC GPLOT than to run 200 PROC TABULATES and 100 PROC GPLOTS, each with a WHERE statement.

DATA STEP OBJECT-ORIENTED INTERFACE TO ODS
The object-oriented data step interface to ODS, new in release 9.0 and still experimental in release 9.1, provides a way to
send information to ODS. It lets you combine the power of the data step with the output capabilities of ODS. A short way of
describing it is to say that it lets you generate tables with varying numbers of rows and columns, with the ability to
programmatically apply formatting to each individual cell.

The interface regards the output as a series of objects, each of which might contain one or more other objects. For our
sample output, each page contains a table object containing the invoice information and another table object containing the
lineitem information. Each table contains rows, each row contains cells, and each cell contains text. Each object can use the
default formatting for the current style, or you can assign a different formatting.

The code for this is basically the same as that for Example 5, Using Indexes, but instead of writing lines to the output file you
make function calls to the interface. Example 5 wrote text, but with the OO interface you can write to any ODS destination.

8

EXAMPLE 7: OBJECT ORIENTED ODS
data _null_;

 declare odsout Example10();

 set sugi29.invoices end=end;

 Example10.table_start();
 Example10.row_start();
 Example10.format_cell (text: 'Invoice: '
 || put(invoice_num, 3.)
 || ' for ' || trim(customer)
 || ' on ' || left(put(invoice_date, worddatx12.)));
 Example10.row_end();
 Example10.table_end();

 totalcost = 0;
 iorc = 0;
 Example10.table_start();
 Example10.row_start();
 Example10.format_cell(text: 'Line Num');
 Example10.format_cell(text: 'Item');
 Example10.format_cell(text: 'Cost');
 Example10.row_end();
 do while (_iorc_ = 0);
 set sugi29.lineitems key=invoice_num;
 if _iorc_ = 0 then
 do;
 Example10.row_start();
 Example10.format_cell(text: put(line_num, 3.));
 Example10.format_cell(text: item);
 Example10.format_cell(text: put(cost, comma10.2));
 Example10.row_end();
 totalcost = totalcost + cost;
 end;
 end;
 Example10.row_start();
 Example10.format_cell(text: 'Total', column_span: 2,
 Overrides: "font_weight=bold");
 Example10.format_cell(text: put(totalcost, comma10.2)
 Overrides: "font_weight=bold"));
 Example10.row_end();
 error = 0;
 Example10.table_end();

 if not end then
 Example10.page();

run;

ods _all_ close;

As you can see, table_start() starts a new table, and table_end() ends it. row_start() starts a new row, and row_end() ends it.
format_cell adds a new column; the text parameter defines the contents, and the optional column_span() and overrides
parameters specify additional formatting for a particular cell. Many of the style attributes that can be used elsewhere in SAS
can be used in the format_cell function.

9

And the first page of the output looks like this:

REFERENCES

All references are available through the World Wide Web. I suggest using Lex Jansen's search site at
<http://www.lexjansen.com/sugi/> to find individual papers whose location is not specified below, or use the author's name and
the paper title in Google - that works for everything except "The DOCUMENT Procedure", and is likely to keep working even if
sites are reorganized..

Andrew Karp, Sierra Information Systems, A Peek at PROC DOCUMENT,
<http://www.sierrainformation.com/presentationPDF/presentation_11.pdf>.

Daniel O'Connor, SAS Institute, Next Generation Data _NULL_ Report Writing Using ODS OO Features, SUGI 28.

Brian T. Schellenberger, SAS Institute, ODS Layout: Arranging ODS Output as You See Fit, SUGI 28.

Jason Secosky, SAS Institute, The Data step in Version 9: What's New, <http://support.sas.com/rnd/papers/sugi27/dsv9-
sugi.pdf>

SAS Institute, The DOCUMENT Procedure, <http://support.sas.com/91doc/getDoc/odsug.hlp/a002217000.htm>.

SAS Institute, New Features for ODS Destinations in 8.2, <http://support.sas.com/rnd/base/topics/odsprinter/new82.html>.

CONTACT INFORMATION

Jack Hamilton
First Health
750 Riverpoint Drive
West Sacramento, California 95605 USA
jackhamilton@firsthealth.com
www.excursive.com/sas

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

APPENDIX I – CREATE SAMPLE DATASETS

options compress=no nocenter
 nodate nonumber;

data sugi29.Invoices;
 infile cards;
 input @1 Invoice_Num 3.
 @5 Customer $14.
 @20 Invoice_Date date9.;
 format Invoice_Date worddatx12.;
cards;
101 Hugo Furst 01Jan2004
102 Freida Peeples 15Jan2004
103 Al E. Loohah 30Jan2004
;;;;

data items;
 infile cards;
 input @1 Item $10.
 @12 Cost 10.2;
 format cost comma10.2;
cards;
Widget 12.00
Gadget 10.00
Frammet 36.00
Gizmo 50.37
Whatsit 100.00
ItsIts 1.00
Thingies 37.56
Sprockets 13.00
Geehaws 5.76
HooHaas 22.22
;;;;

data sugi29.LineItems;
 keep Invoice_Num Line_Num Item Cost;

 set sugi29.invoices (keep=invoice_num);

 Line_Num = 0;

 do i = 1 to 10;
 if ranuni(95819) > .5 then
 do;
 line_num + 1;
 set items point=i;
 output;
 end;
 end;

run;

proc datasets library=sugi29 nolist;
 modify LineItems;
 index create Invoice_Num;
run; quit;

creates these data in sugi29.LineItems:

 Invoice_Num Line_Num Item Cost
 101 1 Widget 12.00
 2 Gadget 10.00
 3 Frammet 36.00
 4 Thingies 37.56
 102 1 Gadget 10.00
 2 Gizmo 50.37
 3 ItsIts 1.00
 4 Geehaws 5.76
 5 HooHaas 22.22
 103 1 Gadget 10.00
 2 Gizmo 50.37
 3 Whatsit 100.00
 4 ItsIts 1.00

1 Data _null_ reports are data steps which produce only an output print file, but no output data sets. In practice,
data _null_ reports often produce summary data sets along with print output, but the name "data _null_" is still
used.
2 I'm ignoring version 7, which had only a limited release.
3 TLA = Three Letter Acronym; ETLA = Extended Three Letter Acronym.

